AP STATE COUNCIL OF HIGHER EDUCATION

w.e.f. 2020-21 (Revised in April, 2020)

ZOOLOGY – SEMESTER I

PAPER – I: ANIMAL DIVERSITY – BIOLOGY OF NONCHORDATES

HOURS: 60 (5X12)

Max. Marks: 100

Course Outcomes: By the completion of the course the graduate should able to -

- CO1 Describe general taxonomic rules on animal classification
- CO2 Classify Protozoa toCoelenterata with taxonomic keys
- **CO3** Classify Phylum Platy hemninthes to Annelida phylum using examples from parasitic adaptation and vermin composting
- **CO4** Describe Phylum Arthropoda to Mollusca using examples and importance of insects and Molluscans
- **CO5** Describe Echinodermata to Hemi chordata with suitable examples and larval stages in relation to the phylogeny

Learning objectives

- 1. To understand the taxonomic position of protozoa to helminthes.
- 2. To understand the general characteristics of animals belonging to protozoa to hemichordata.
- 3. To understand the structural organization of animals phylum from protozoa to hemichordata.
- 4. To understand the origin and evolutionary relationship of different phyla from protozoa to hemichordata.
- 5. To understand the origin and evolutionary relationship of different phylum from annelids to hemichordates.

ZOOLOGY SYLLABUS FOR I SEMESTER

PAPER - I: ANIMAL DIVERSITY - BIOLOGY OF NONCHORDATES

HOURS:60 (5X12)

Max. Marks: 100

UNIT I

- 1.1 Principles of Taxonomy Binomial nomenclature Rules of nomenclature
- 1.2 Whittaker's five kingdom concept and classification of Animal Kingdom.

Phylum Protozoa

- 1.3 General Characters and classification of protozoa up to classes with suitable examples
- 1.4 Locomotion, nutrition and reproduction in Protozoans
- 1.5 *Elphidium* (type study)

UNIT –II

PhylumPorifera

- 2.1 General characters and classification up to classes with suitable examples
- 2.2 Skelton in Sponges
- 2.3 Canal system in sponges

PhylumCoelenterata

- 2.4 General characters and classification up to classes with suitable examples
- 2.5 Metagenesisin Obelia
- 2.6 Polymorphism in coelenterates
- 2.7 Corals and coral reefs

PhylumCtenophora :

2.8 General Characters and Evolutionary significance(affinities)

Unit – III

PhylumPlatyhelminthes

- 3.1 General characters and classification up to classes with suitable examples
- 3.2 Life cycle and pathogenecity of *Fasciola hepatica*

3.3 Parasitic Adaptations in helminthes

Phylum Nemathelminthes

- 3.4 General characters and classification up to classes with suitable examples
- 3.5. Life cycle and pathogenecity of Ascarislumbricoides

Unit – IV

Phylum Annelida

- 4.1 General characters and classification up to classes with suitable examples
- 4.2 Evolution of Coelom and Coelomoducts
- 4.3 Vermiculture Scope, significance, earthworm species, processing, Vermicompost, economic importance of vermicompost

Phylum Arthropoda

- 4.4 General characters and classification up to classes with suitable examples
- 4.5 Vision and respiration in Arthropoda
- 4.6 Metamorphosis in Insects
- 4.7 *Peripatus* Structure and affinities
- 4.8 Social Life in Bees and Termites

Unit – V

Phylum Mollusca

- 5.1 General characters and classification up to classes with suitable examples
- 5.2 Pearl formation in Pelecypoda
- 5.3 Sense organs in Mollusca

PhylumEchinodermata

- 5.4 General characters and classification up to classes with suitable examples
- 5.5 Water vascular system in star fish
- 5.6 Larval forms of Echinodermata

PhylumHemichordata

5.7 General characters and classification up to classes with suitable examples

5.8 Balanoglossus - Structure and affinities

Co-curricular activities (suggested)

- Preparation of chart/model of phylogenic tree of life, 5-kingdom classification, *Elphidium* life cycle etc.
- Visit to Zoology museum or Coral island as part of Zoological tour
- Charts on life cycle of *Obelia*, polymorphism, sponge spicules
- Clay models of canal system in sponges
- Preparation of charts on life cycles of Fasciola and Ascaris
- Visit to adopted village and conducting awareness campaign on diseases, to people as part of Social Responsibility.
- Plaster-of-paris or Thermocol model of Peripatus
- Construction of a vermicompost in each college, manufacture of manure by students and donating to local farmers
- Models of compound eye, bee hive and terminarium (termitaria) by students
- Visit to apiculture centre and short-term training as part of apprenticeship programme of the govt. Of Andhra Pradesh
- Chart on pearl forming layers using clay or Thermocol
- Visit to a pearl culture rearing industry/institute
- Live model of water vascular system
- Phylogeny chart on echinoderm larvae and their evolutionary significance
- Preparation of charts depicting the feeding mechanism, 3 coeloms, tornaria larva etc., of *Balanoglossus*

REFERENCE BOOKS

1. L.H. Hyman 'The Invertebrates' Vol I, II and V. – M.C. Graw Hill Company Ltd.

2. Kotpal, R.L. 1988 - 1992 Protozoa, Porifera, Coelenterata, Helminthes,

Arthropoda, Mollusca, Echinodermata. Rastogi Publications, Meerut.

3. E.L. Jordan and P.S. Verma 'Invertebrate Zoology' S. Chand and Company.

4. R.D. Barnes 'Invertebrate Zoology' by: W.B. Saunders CO., 1986.

5. Barrington. E.J.W., 'Invertebrate structure and Function' by ELBS.

6 P.S. Dhami and J.K. Dhami. Invertebrate Zoology. S. Chand and Co. New Delhi.

7. Parker, T.J. and Haswell '*A text book of Zoology*' by, W.A., Mac Millan Co.

London.

8. Barnes, R.D. (1982). Invertebrate Zoology, V Edition"

ZOOLOGY MODEL PAPER FOR I SEMESTER

ZOOLOGY - PAPER - I

ANIMAL DIVERSITY – BIOLOGY OF NONCHORDATES

Time : 3 hrs		Max. Marks : 75
I. Answer any FIVE of the foll	owing :	5x5=25
Draw labeled diagrams when	rever necessary	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
II. Answer any FIVE of the following:		5x10=50
Draw labeled diagrams when	rever necessary	
9.		
	OR	
10.		
	OR	
11.		
	OR	
12.		
	OR	

13.

OR

ZOOLOGY PRACTICAL SYLLABUS FOR I SEMESTER ZOOLOGY - PAPER - I

ANIMAL DIVERSITY - BIOLOGY OF NONCHORDATES

Periods: 24

Max. Marks: 50

Learning Outcomes:

- To understand the importance of preservation of museum specimens
- To identify animals based on special identifying characters
- To understand different organ systems through demo or virtual dissections
- To maintain a neat, labeled record of identified museum specimens

Syllabus :

1. Study of museum slides / specimens / models (Classification of animals up to orders)

Protozoa: Amoeba, Paramoecium, Paramoecium Binary fission and Conjugation, Vorticella, Entamoebahistolytica, Plasmodium vivax

Porifera: *Sycon, Spongilla, Euspongia, Sycon-* T.S & L.S, Spicules, Gemmule **Coelenterata:** *Obelia – Colony & Medusa, Aurelia, Physalia, Velella, Corallium, Gorgonia, Pennatulav.*

Platyhelminthes: *Planaria, Fasciola hepatica, Fasciola*larval forms – Miracidium, Redia, Cercaria, *Echinococcusgranulosus, Taeniasolium, Schistosomahaematobium*vii.

Nemathelminthes: *Ascaris(Male & Female), Drancunculus, Ancylostoma, Wuchereria*

Annelida: Nereis, Aphrodite, Chaetopteurs, Hirudinaria, Trochophore larva Arthropoda: Cancer, Palaemon, Scorpion, Scolopendra, Sacculina, Limulus, Peripatus, Larvae - Nauplius, Mysis, Zoea, Mouth parts of male &female Anopheles and Culex, Mouthparts of Housefly and Butterfly. xiii.

Mollusca: Chiton, Pila, Unio, Pteredo, Murex, Sepia, Loligo, Octopus, Nautilus, Glochidium larva

Echinodermata: Asterias, Ophiothrix, Echinus, Clypeaster, Cucumaria, Antedon, Bipinnaria larva

Hemichordata: Balanoglossus, Tornaria larva

2. Dissections:

1. Prawn: Appendages, Digestive system, Nervous system, Mounting of Statocyst

2. Insect Mouth Parts

3. Laboratory Record work shall be submitted at the time of practical e amination

4. An **"Animal album**" containing photographs, cut outs, with appropriate write up about the above mentioned taxa. Different taxa/ topics may be given to different sets of students for this purpose

5. Computer - aided techniques should be adopted or show virtual dissections

RFERENCEMANUALS:

1. Practical Zoology- Invertebrates S.S. Lal

2. Practical Zoology - Invertebrates P.S. Verma

3. Practical Zoology - Invertebrates K.P. Kurl

4. Ruppert and Barnes (2006) Invertebrate Zoology,8th Edition, Holt Saunders

International Edition